# LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034



Date: 26-04-2025

# M.Sc. DEGREE EXAMINATION - MATHEMATICS

#### THIRD SEMESTER – APRIL 2025



Max.: 100 Marks

### PMT3MC02 - NUMBER THEORY

Dept. No.

| Tin                  | ne: 09:00 AM - 12:00 PM                                                                                                                     |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                      | SECTION A – K1 (CO1)                                                                                                                        |  |  |  |
|                      | Answer ALL the questions $(5 \times 1 = 5)$                                                                                                 |  |  |  |
| 1                    | Answer the following                                                                                                                        |  |  |  |
| a)                   | Does the following statement:                                                                                                               |  |  |  |
|                      | "If m and n are positive integers, $m \mid n$ and $n \mid m$ then $m = n$ " holds? Justify.                                                 |  |  |  |
| b)                   | State Chinese remainder theorem.                                                                                                            |  |  |  |
| c)                   | What are the two basic problems that dominate the theory of quadratic residues?                                                             |  |  |  |
| d)                   | Define primitive root.                                                                                                                      |  |  |  |
| e)                   | Write any two advantages of public key cryptography.                                                                                        |  |  |  |
|                      | SECTION A – K2 (CO1)                                                                                                                        |  |  |  |
|                      | Answer ALL the questions $(5 \times 1 = 5)$                                                                                                 |  |  |  |
| 2                    | MCQ                                                                                                                                         |  |  |  |
| a)                   | The linear combination of $(252,198) = 18$ is                                                                                               |  |  |  |
|                      | (i) $252 \times 4 - 198 \times 5$ (ii) $252 \times 5 - 198 \times 4$ (iii) $252 \times 5 - 198 \times 2$ (iv) $252 \times 4 - 198 \times 4$ |  |  |  |
| b)                   | If $a$ is a whole number and $p$ is a prime number then                                                                                     |  |  |  |
|                      | (i) $a^{p-1} - a$ is divisible by $p$ (ii) $a^p - 1$ is divisible by $p$                                                                    |  |  |  |
|                      | (iii) $a^p - a$ is not divisible by $p$ (iv) $a^p - a$ is divisible by $p$                                                                  |  |  |  |
| c)                   | If P is an odd positive integer then $(-1   P)$ is                                                                                          |  |  |  |
|                      | (i) $(-1)^{\frac{P-1}{2}}$ (ii) $(-1)^{\frac{P^2-1}{2}}$ (iii) $(-1)^{\frac{P^2-1}{8}}$ (iv) $(-1)^{\frac{P-1}{8}}$                         |  |  |  |
| d)                   | The exponent of 3 modulo 8 is $(n)(-1)^2$ $(n)(-1)^3$ $(n)(-1)^3$                                                                           |  |  |  |
| u)                   | (i) 4 (ii) 2 (iii) 8 (iv) 16                                                                                                                |  |  |  |
| e)                   | The inverse of 17 modulo 29 is                                                                                                              |  |  |  |
| - /                  | (i) 6 (ii) 9 (iii) 15 (iv) 12                                                                                                               |  |  |  |
| SECTION B – K3 (CO2) |                                                                                                                                             |  |  |  |
|                      | Answer any THREE of the following $(3 \times 10 = 30)$                                                                                      |  |  |  |
| 3                    | State and prove the properties of greatest common divisor.                                                                                  |  |  |  |
| 4                    | For a given modulus <i>m</i> , show that                                                                                                    |  |  |  |
|                      | (i) $\hat{a} = \hat{b}$ if and only if $a \equiv b \pmod{m}$                                                                                |  |  |  |
|                      | (ii) Two integers x and y are in the same residue class if and only if $x \equiv y \pmod{m}$                                                |  |  |  |
|                      | (iii) The $m$ residue classes $\hat{1}, \hat{2},, \hat{m}$ are disjoint and their union is the set of all integers.                         |  |  |  |
| 5                    | Show that the Legendre's symbol $(n \mid p)$ is completely multiplicative function of $n$ .                                                 |  |  |  |
| 6                    | Find the primitive roots of 17.                                                                                                             |  |  |  |
| 7                    | In a long string of ciphertext which was encrypted by means of an affine map on single letter message                                       |  |  |  |
|                      | units in the 26-letter alphabet. You observe that the most frequently occurring letters are "K" and "D" in                                  |  |  |  |
|                      | that order. Assuming that those ciphertext message units are the encryption of "E" and "T" respectively.                                    |  |  |  |
|                      | Develop the deciphering formula with appropriate keys.                                                                                      |  |  |  |

| SECTION C – K4 (CO3) |                                                                                                                                                 |    |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|                      | Answer any TWO of the following (2 x 12.5 = 25                                                                                                  | 5) |  |
| 8                    | State and prove Euler's summation formula.                                                                                                      |    |  |
| 9                    | Solve $x \equiv 4 \pmod{11}$ ; $x \equiv 5 \pmod{7}$ and $x \equiv 6 \pmod{13}$ .                                                               |    |  |
| 10                   | Determine whether 219 is a quadratic residue or nonresidue mod 383.                                                                             |    |  |
| 11                   | Given $m \ge 1$ , $(a, m) = 1$ and let $f = exp_m(a)$ . Then show that                                                                          |    |  |
|                      | (i) $a^k \equiv a^h \pmod{m}$ if and only if $k \equiv h \pmod{m}$                                                                              |    |  |
|                      | (ii) $a^k \equiv 1 \pmod{m}$ if and only if $k \equiv 0 \pmod{m}$ . In particular, $f \mid \varphi(m)$                                          |    |  |
|                      | (iii) The numbers 1, $a$ , $a^2$ ,, $a^{f-1}$ are incongruent modulo $m$ .                                                                      |    |  |
| SECTION D – K5 (CO4) |                                                                                                                                                 |    |  |
|                      | Answer any ONE of the following $(1 \times 15 = 15)$                                                                                            | 5) |  |
| 12                   | Explain Euler's totient and analyze Euler-Fermat theorem with an appropriate proof.                                                             |    |  |
| 13                   | Analyze Gauss lemma with a suitable proof.                                                                                                      |    |  |
| SECTION E – K6 (CO5) |                                                                                                                                                 |    |  |
|                      | Answer any ONE of the following $(1 \times 20 = 20)$                                                                                            | _  |  |
| 14                   | (i) Given integers $a$ and $b$ with $b > 0$ , prove that there exists a unique pair of integers $q$ and $r$ such the                            |    |  |
|                      | $a = bq + r$ with $0 \le r < b$ . Moreover, show that $r = 0$ if and only if $b / a$ . (12 marks)                                               | /  |  |
|                      | (ii) If the exponent of a and b modulo m are f and g respectively and $(f, g) = 1$ , then prove that the                                        |    |  |
| 1.5                  | exponent of $ab \mod m$ is $fg$ . (8 marks)                                                                                                     |    |  |
| 15                   | (i) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(Z/NZ)$ and set $D = ad - bc$ , then justify that the following statements are | ;  |  |
|                      | equivalent                                                                                                                                      |    |  |
|                      | (a) g.c.d (D, N) = 1                                                                                                                            |    |  |
|                      | (b) A has an inverse matrix                                                                                                                     |    |  |
|                      | (c) if x and y are not both 0 in $Z/NZ$ then $A \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$                 |    |  |
|                      | (d) A gives a 1-1 correspondence of $(Z/NZ)^2$ with itself. (10 marks)                                                                          | s) |  |
|                      | (ii) Encipher the message "PAYMENOW" using affine transformation with enciphering key $a=7$ at $b=12$ .                                         |    |  |

##